
django-extensions Documentation
Release 3.2.3

Michael Trier, Bas van Oostveen, and contributors

Jun 05, 2023

Contents

1 Getting Started 3

2 Getting it 5

3 Compatibility with versions of Python and Django 7

4 Contents 9
4.1 Installation instructions . 9
4.2 Admin Extensions . 10
4.3 Command Extensions . 12
4.4 Command Signals . 50
4.5 Debugger Tags . 51
4.6 Field Extensions . 52
4.7 Jobs Scheduling . 54
4.8 Model Extensions . 55
4.9 Permissions . 56
4.10 Utilities . 57
4.11 Validators . 58

5 Indices and tables 59

i

ii

django-extensions Documentation, Release 3.2.3

Django Extensions is a collection of custom extensions for the Django Framework.

These include management commands, additional database fields, admin extensions and much more.

Contents 1

https://django-extensions-zh.readthedocs.io/zh_CN/latest/

django-extensions Documentation, Release 3.2.3

2 Contents

CHAPTER 1

Getting Started

The easiest way to figure out what Django Extensions are all about is to watch the excellent screencast by Eric Holscher
(Direct Vimeo link). In a couple minutes Eric walks you through a half a dozen command extensions.

3

https://ericholscher.com/blog/2008/sep/12/screencast-django-command-extensions/
https://vimeo.com/1720508

django-extensions Documentation, Release 3.2.3

4 Chapter 1. Getting Started

CHAPTER 2

Getting it

You can get Django Extensions by using pip:

$ pip install django-extensions

If you want to install it from source, grab the git repository and run setup.py:

$ git clone git://github.com/django-extensions/django-extensions.git
$ cd django-extensions
$ python setup.py install

Then you will need to add the django_extensions application to the INSTALLED_APPS setting of your Django project
settings.py file.

For more detailed instructions check out our Installation instructions. Enjoy.

5

django-extensions Documentation, Release 3.2.3

6 Chapter 2. Getting it

CHAPTER 3

Compatibility with versions of Python and Django

We follow the Django guidelines for supported Python and Django versions. See more at Django Supported Versions

This might mean the django-extensions may work with older or unsupported versions but we do not guarantee it and
most likely will not fix bugs related to incompatibilities with older versions.

7

https://docs.djangoproject.com/en/dev/internals/release-process/#supported-versions

django-extensions Documentation, Release 3.2.3

8 Chapter 3. Compatibility with versions of Python and Django

CHAPTER 4

Contents

4.1 Installation instructions

synopsis Installing django-extensions

4.1.1 Installing

You can use pip to install django-extensions for usage:

$ pip install django-extensions

4.1.2 Development

Django-extensions is hosted on github:

https://github.com/django-extensions/django-extensions

Source code can be accessed by performing a Git clone.

Tracking the development version of django command extensions should be pretty stable and will keep you up-to-date
with the latest fixes.

$ pip install -e git+https://github.com/django-extensions/django-extensions.git#egg=django-extensions

You find the sources in src/django-extensions now.

You can verify that the application is available on your PYTHONPATH by opening a python interpreter and entering
the following commands:

>>> import django_extensions
>>> django_extensions.VERSION
(0, 8)

9

django-extensions Documentation, Release 3.2.3

Keep in mind that the current code in the git repository may be different from the packaged release. It may contain
bugs and backwards-incompatible changes but most likely also new goodies to play with.

4.1.3 Configuration

You will need to add the django_extensions application to the INSTALLED_APPS setting of your Django project
settings.py file.:

INSTALLED_APPS = (
...
'django_extensions',

)

This will make sure that Django finds the additional management commands provided by django-extensions.

The next time you invoke ./manage.py help you should be able to see all the newly available commands.

Some commands or options require additional applications or python libraries, for example:

• ‘export_emails’ will require the python vobject module to create vcard files.

• ‘graph_models’ requires pygraphviz to render directly to image file.

If the given application or python library is not installed on your system (or not in the python path) the executed
command will raise an exception and inform you of the missing dependency.

4.2 Admin Extensions

synopsis Admin Extensions

• ForeignKeyAutocompleteAdmin - ForeignKeyAutocompleteAdmin will enable the admin app to show For-
eignKey fields with an search input field. The search field is rendered by the ForeignKeySearchInput form
widget and uses jQuery to do configurable autocompletion.

• ForeignKeyAutocompleteStackedInline, ForeignKeyAutocompleteTabularInline - in the same fashion of the For-
eignKeyAutocompleteAdmin these two classes enable a search input field for ForeignKey fields in AdminInline
classes.

4.2.1 Depreciation

Django 2.0 now contains similar functionality as ForeignKeyAutocompleteAdmin therefore we are deprecating this
extension and highly encouraging everyone to update to it.

This code will be removed in the near future when support for Django older then 2.0 is dropped.

More on this: https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.
autocomplete_fields

4.2.2 Known Issues

• SECURITY ISSUE: Autocompletion does not check permissions nor the requested models on the autocomple-
tion view. This can be used by users with access to the admin to expose data from other models. Please be aware
and careful when using ForeignKeyAutocompleteAdmin.

• The current version of the ForeignKeyAutocompleteAdmin has issues with recent Django versions.

10 Chapter 4. Contents

https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.autocomplete_fields
https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.autocomplete_fields

django-extensions Documentation, Release 3.2.3

• We strongly suggest project using this extension to update to Django 2.0 and use the native autocomplete_fields.

4.2.3 Example Usage

To enable the Admin Autocomplete you can follow this code example in your admin.py file:

from django.contrib import admin
from foo.models import Permission
from django_extensions.admin import ForeignKeyAutocompleteAdmin

class PermissionAdmin(ForeignKeyAutocompleteAdmin):
User is your FK attribute in your model
first_name and email are attributes to search for in the FK model
related_search_fields = {

'user': ('first_name', 'email'),
}

fields = ('user', 'avatar', 'is_active')

...

admin.site.register(Permission, PermissionAdmin)

If you are using django-reversion you should follow this code example:

from django.contrib import admin
from foo.models import MyVersionModel
from reversion.admin import VersionAdmin
from django_extensions.admin import ForeignKeyAutocompleteAdmin

class MyVersionModelAdmin(VersionAdmin, ForeignKeyAutocompleteAdmin):
...

admin.site.register(MyVersionModel, MyVersionModelAdmin)

If you need to limit the autocomplete search, you can override the get_related_filter method of the admin.
For example if you want to allow non-superusers to attach attachments only to articles they own you can use:

class AttachmentAdmin(ForeignKeyAutocompleteAdmin):

...

def get_related_filter(self, model, request):
user = request.user
if not issubclass(model, Article) or user.is_superuser():

return super(AttachmentAdmin, self).get_related_filter(
model, request

)
return Q(owner=user)

Note that this does not protect your application from malicious attempts to circumvent it (e.g. sending fabricated
requests via cURL).

4.2. Admin Extensions 11

django-extensions Documentation, Release 3.2.3

4.3 Command Extensions

synopsis Command Extensions

4.3.1 shell_plus

synopsis Django shell with autoloading of the apps database models and subclasses of user-defined
classes.

Interactive Python Shells

There is support for three different types of interactive python shells.

IPython:

$./manage.py shell_plus --ipython

bpython:

$./manage.py shell_plus --bpython

ptpython:

$./manage.py shell_plus --ptpython

Python:

$./manage.py shell_plus --plain

It is possible to directly add command line arguments to the underlying Python shell using --:

$./manage.py shell_plus --ipython -- --profile=foo

The default resolution order is: ptpython, bpython, ipython, python.

You can also set the configuration option SHELL_PLUS to explicitly specify which version you want.

Always use IPython for shell_plus
SHELL_PLUS = "ipython"

It is also possible to use IPython Notebook, an interactive Python shell which uses a web browser as its user interface,
as an alternative shell:

$./manage.py shell_plus --notebook

In addition to being savable, IPython Notebooks can be updated (while running) to reflect changes in a Django appli-
cation’s code with the menu command Kernel > Restart.

Configuration

Sometimes, models from your own apps and other people’s apps have colliding names, or you may want to completely
skip loading an app’s models. Here are some examples of how to do that.

Note: These settings are only used inside shell_plus and will not affect your environment.

12 Chapter 4. Contents

https://ipython.org/ipython-doc/dev/interactive/htmlnotebook.html

django-extensions Documentation, Release 3.2.3

Rename the automatic loaded module Messages in the app blog to blog_messages.
SHELL_PLUS_MODEL_ALIASES = {'blog': {'Messages': 'blog_messages'},}

Prefix all automatically loaded models in the app blog with myblog.
SHELL_PLUS_APP_PREFIXES = {'blog': 'myblog',}

Dont load the 'sites' app, and skip the model 'pictures' in the app 'blog'
SHELL_PLUS_DONT_LOAD = ['sites', 'blog.pictures']

Dont load any models
SHELL_PLUS_DONT_LOAD = ['*']

You can also combine model_aliases and dont_load. When referencing nested modules, e.g. somepack-
age.someapp.models.somemodel, omit the package name and the reference to models. For example:

SHELL_PLUS_DONT_LOAD = ['someapp.somemodel',] # This works
SHELL_PLUS_DONT_LOAD = ['somepackage.someapp.models.somemodel',] # This does NOT
→˓work

It is possible to ignore autoloaded modules when using manage.py, like:

$./manage.py shell_plus --dont-load app1 --dont-load app2.module1

Command line parameters and settings in the configuration file are merged, so you can safely append modules to
ignore from the commandline for one-time usage.

Other configuration options include:

Always use IPython for shell_plus
SHELL_PLUS = "ipython"

SHELL_PLUS_PRINT_SQL = True

Truncate sql queries to this number of characters (this is the default)
SHELL_PLUS_PRINT_SQL_TRUNCATE = 1000

To disable truncation of sql queries use
SHELL_PLUS_PRINT_SQL_TRUNCATE = None

Specify sqlparse configuration options when printing sql queries to the console
SHELL_PLUS_SQLPARSE_FORMAT_KWARGS = dict(

reindent_aligned=True,
truncate_strings=500,

)

Specify Pygments formatter and configuration options when printing sql queries to
→˓the console
import pygments.formatters
SHELL_PLUS_PYGMENTS_FORMATTER = pygments.formatters.TerminalFormatter
SHELL_PLUS_PYGMENTS_FORMATTER_KWARGS = {}

Additional IPython arguments to use
IPYTHON_ARGUMENTS = []

IPYTHON_KERNEL_DISPLAY_NAME = "Django Shell-Plus"

(continues on next page)

4.3. Command Extensions 13

django-extensions Documentation, Release 3.2.3

(continued from previous page)

Additional Notebook arguments to use
NOTEBOOK_ARGUMENTS = []
NOTEBOOK_KERNEL_SPEC_NAMES = ["python3", "python"]

Collision resolvers

You don’t have to worry about inaccessibility of models with conflicting names.

If you have conflicting model names, all conflicts can be resolved automatically. All models will be available under
shell_plus, some of them with intuitive aliases.

This mechanism is highly configurable and you must only set SHELL_PLUS_MODEL_IMPORTS_RESOLVER. You
should set full path to collision resolver class.

All predefined collision resolvers are in django_extensions.collision_resolvers module. Example:

SHELL_PLUS_MODEL_IMPORTS_RESOLVER = 'django_extensions.collision_resolvers.FullPathCR'

All collision resolvers searches for models with the same name.

If conflict is detected they decides, which model to choose. Some of them are creating aliases for all conflicting
models.

Example

Suppose that we have two apps:

• programming(with models Language and Framework)

• workers(with models Language and Worker)

‘workers’ app is last in alphabetical order, but suppose that ‘programming’ app is occurs firstly in INSTALLED_APPS.

Collision resolvers won’t change aliases for models Framework and Worker, because their names are unique. There
are several types of collision resolvers:

LegacyCR

Default collision resolver. Model from last application in alphabetical order is selected:

from workers import Language

InstalledAppsOrderCR

Collision resolver which selects the first model from INSTALLED_APPS. You can set your own app priorities list
subclassing him and overwriting APP_PRIORITIES field.

This collision resolver will select a model from the first app on this list. If both app’s are absent on this list, resolver
will choose a model from the first app in alphabetical order:

from programming import Language

FullPathCR

Collision resolver which transform full model name to alias by changing dots to underscores. He also removes ‘mod-
els’ part of alias, because all models are in models.py files.

Model from last application in alphabetical order is selected:

14 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

from programming import Language (as programming_Language)
from workers import Language, Language (as workers_Language)

AppNamePrefixCR

Collision resolver which transform pair (app name, model_name) to alias {app_name}_{model_name}. Model
from last application in alphabetical order is selected.

Result is different than FullPathCR, when model has app_label other than current app:

from programming import Language (as programming_Language)
from workers import Language, Language (as workers_Language)

AppNameSuffixCR

Collision resolver which transform pair (app name, model_name) to alias {model_name}_{app_name}

Model from last application in alphabetical order is selected:

from programming import Language (as Language_programming)
from workers import Language, Language (as Language_workers)

AppNamePrefixCustomOrderCR

Collision resolver which is mixin of AppNamePrefixCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like AppNamePrefixCR, but sets the default model using InstalledAppsOrderCR:

from programming import Language, Language (as programming_Language)
from workers import Language (as workers_Language)

AppNameSuffixCustomOrderCR

Collision resolver which is a mixin of AppNameSuffixCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like AppNameSuffixCR, but sets the default model using InstalledAppsOrderCR:

from programming import Language, Language (as Language_programming)
from workers import Language (as Language_workers)

FullPathCustomOrderCR

Collision resolver which is a mixin of FullPathCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like FullPathCR, but sets the default model using InstalledAppsOrderCR:

from programming import Language, Language (as programming_Language)
from workers import Language (as workers_Language)

AppLabelPrefixCR

Collision resolver which transform pair (app_label, model_name) to alias {app_label}_{model_name}

This is very similar to AppNamePrefixCR but this may generate shorter names in the case of apps nested into
several namespace (like Django’s auth app):

with AppNamePrefixCR
from django.contrib.auth.models import Group (as django_contrib_auth_Group)

with AppLabelPrefixCR
from django.contrib.auth.models import Group (as auth_Group)

4.3. Command Extensions 15

django-extensions Documentation, Release 3.2.3

AppLabelSuffixCR

Collision resolver which transform pair (app_label, model_name) to alias {model_name}_{app_label}

Similar idea as the above, but based on AppNameSuffixCR:

with AppNamePrefixCR
from django.contrib.auth.models import Group (as Group_django_contrib_auth)

with AppLabelSuffixCR
from django.contrib.auth.models import Group (as Group_auth)

Writing your custom collision resolver

You can customize models import behaviour by subclassing one of the abstract collision resolvers:

PathBasedCR

Abstract resolver which transforms full model name into alias. To use him you need to overwrite transform_import
function which should have one parameter.

It will be a full model name. It should return valid alias as a str instance.

AppNameCR

Abstract collision resolver which transform pair (app name, model_name) to alias by changing dots to underscores.

You must define MODIFICATION_STRING which should be string to format with two keyword arguments:
app_name and model_name. For example: {app_name}_{model_name}.

Model from last application in alphabetical order is selected.

You can mix PathBasedCR or AppNameCR with InstalledAppsOrderCR, but InstalledAppsOrderCR should be the
second base class.

BaseCR

Abstract base collision resolver. All collision resolvers needs to inherit from this class.

To write a custom collision resolver you need to overwrite the resolve_collisions function. It receives Dict[str,
List[str]] where key is model name and values are full model names (full model name means: module +
model_name).

You should return Dict[str, str], where key is model name and value is full model name.

Import Subclasses

If you want to load automatically all project subclasses of some base class, you can achieve this by setting
SHELL_PLUS_SUBCLASSES_IMPORT option.

It must be a list of either classes or strings containing paths to these classes.

For example, if you want to load all your custom managers then you should provide:

from django.db.models import Manager
SHELL_PLUS_SUBCLASSES_IMPORT = [Manager]

Then shell_plus will load all your custom managers:

16 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

Shell Plus Subclasses Imports
from utils.managers import AbstractManager
from myapp.managers import MyCustomManager
from somewhere.else import MyOtherManager
django.db.models.Manager is not loaded because only project classes are.

By default, all subclasses of your base class from all projects modules will be loaded.

You can exclude some modules and all their submodules by passing SHELL_PLUS_SUBCLASSES_IMPORT_MODULES_BLACKLIST
option:

SHELL_PLUS_SUBCLASSES_IMPORT_MODULES_BLACKLIST = ['utils', 'somewhere.else']

Elements of this list must be strings containing full modules paths. If these modules are excluded only
MyCustomManager from myapp.managers will be loaded.

If you are using SHELL_PLUS_SUBCLASSES_IMPORT shell_plus loads all project modules for finding subclasses.

Sometimes it can lead to some errors(for example when we have an old unused module which contains syntax errors).

Excluding these modules can help avoid shell_plus crashes in some situations. It is recommended to exclude all
setup.py files.

IPython Notebook

There are two settings that you can use to pass your custom options to the IPython Notebook in your Django settings.

The first one is NOTEBOOK_ARGUMENTS that can be used to hold those options that available via:

$ ipython notebook -h

For example:

NOTEBOOK_ARGUMENTS = [
'--ip', 'x.x.x.x',
'--port', 'xx',

]

Another one is IPYTHON_ARGUMENTS that for those options that available via:

$ ipython -h

The Django settings module and database models are auto-loaded into the interactive shell’s global namespace also
for IPython Notebook.

Auto-loading is done by a custom IPython extension which is activated by default by passing the --ext
django_extensions.management.notebook_extension argument to the Notebook. If you need to pass
custom options to the IPython Notebook, you can override the default options in your Django settings using the
IPYTHON_ARGUMENTS setting. For example:

IPYTHON_ARGUMENTS = [
'--ext', 'django_extensions.management.notebook_extension',
'--ext', 'myproject.notebook_extension',
'--debug',

]

To activate auto-loading, remember to either include the django-extensions’ default notebook extension or copy its
auto-loading code into your own extension.

4.3. Command Extensions 17

django-extensions Documentation, Release 3.2.3

Note that the IPython Notebook feature doesn’t currently honor the --dont-load option.

Additional Imports

In addition to importing the models, you can specify other items to import by default. These can be specified with the
settings SHELL_PLUS_IMPORTS, SHELL_PLUS_PRE_IMPORTS and SHELL_PLUS_POST_IMPORTS.

The order of import loading is as follows:

• SHELL_PLUS_PRE_IMPORTS

• Subclasses (if enabled)

• Models (if not disabled)

• Default Django imports (if not disabled)

• SHELL_PLUS_IMPORTS

• SHELL_PLUS_POST_IMPORTS

Example for in your settings.py file:

SHELL_PLUS_IMPORTS = [
'from module.submodule1 import class1, function2',
'from module.submodule2 import function3 as another1',
'from module.submodule3 import *',
'import module.submodule4',

]

These symbols will be available as soon as the shell starts.

Database application signature

If using PostgreSQL the application_name is set by default to django_shell to help identify queries made
under shell_plus.

SQL queries

If the configuration option DEBUG is set to True, it is possible to print SQL queries as they’re executed in shell_plus
like:

$./manage.py shell_plus --print-sql

You can also set the configuration option SHELL_PLUS_PRINT_SQL to omit the above command line option.

print SQL queries in shell_plus
SHELL_PLUS_PRINT_SQL = True

Printing SQL queries also comes with the possibility of specifying the maximum amount of characters to display:

$./manage.py shell_plus –print-sql –truncate-sql

–truncate-sql accepts an int value starting from 0 (which disables truncation). Defaults to 1000.

You can also set the configuration option SHELL_PLUS_PRINT_SQL_TRUNCATE to omit the above command line
option.

18 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

print SQL queries in shell_plus
SHELL_PLUS_PRINT_SQL_TRUNCATE = None

4.3.2 create_template_tags

synopsis Creates a template tag directory structure within the specified application.

Usage

Create templatetags directory for foobar app:

$ python manage.py create_template_tags foobar

it will create directory structure:

foobar/
__init__.py
models.py
templatetags/

__init__.py
foobar_tags.py

you can pass custom tags filename by providing --name argument:

$ python manage.py create_template_tags foobar --name custom_tags

4.3.3 delete_squashed_migrations

synopsis Deletes leftover migrations after squashing and converts squashed migration to a normal one.

Deletes leftover migrations after squashing and converts squashed migration to a normal one by removing the replaces
attribute. This automates the clean up procedure outlined at the end of the Django migration squashing documentation.
Modifies your source tree! Use with care!

Example Usage

With django-extensions installed you cleanup squashed migrations using the delete_squashed_migrations command:

Delete leftover migrations from the first squashed migration found in myapp
$./manage.py delete_squashed_migrations myapp

As above but non-interactive
$./manage.py --noinput delete_squashed_migrations myapp

Explicitly specify the squashed migration to clean up
$./manage.py delete_squashed_migrations myapp 0001_squashed

4.3.4 dumpscript

synopsis Generates a standalone Python script that will repopulate the database using objects.

4.3. Command Extensions 19

https://docs.djangoproject.com/en/dev/topics/migrations/#migration-squashing

django-extensions Documentation, Release 3.2.3

The dumpscript command generates a standalone Python script that will repopulate the database using objects. The
advantage of this approach is that it is easy to understand, and more flexible than directly populating the database, or
using XML.

Why?

There are a few benefits to this:

• less drama with model evolution: foreign keys handled naturally without IDs, new and removed columns are
ignored

• edit script to create 1,000s of generated entries using for loops, generated names, python modules etc.

For example, an edited script can populate the database with test data:

for i in xrange(2000):
poll = Poll()
poll.question = "Question #%d" % i
poll.pub_date = date(2001,01,01) + timedelta(days=i)
poll.save()

Real databases will probably be bigger and more complicated so it is useful to enter some values using the admin
interface and then edit the generated scripts.

Features

• ForeignKey and ManyToManyFields (using python variables, not object IDs)

• Self-referencing ForeignKey (and M2M) fields

• Sub-classed models

• ContentType fields and generic relationships

• Recursive references

• AutoFields are excluded

• Parent models are only included when no other child model links to it

• Individual models can be referenced

How?

To dump the data from all the models in a given Django app (appname):

$./manage.py dumpscript appname > scripts/testdata.py

To dump the data from just a single model (appname.ModelName):

$./manage.py dumpscript appname.ModelName > scripts/testdata.py

To reset a given app, and reload with the saved data:

$./manage.py reset appname
$./manage.py runscript testdata

Note: Runscript needs scripts to be a module, so create the directory and a __init__.py file.

20 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

Caveats

Naming conflicts

Please take care that when naming the output files these filenames do not clash with other names in your import path.
For instance, if the appname is the same as the script name, an importerror can occur because rather than importing
the application modules it tries to load the modules from the dumpscript file itself.

Examples:

Wrong
$./manage.py dumpscript appname > dumps/appname.py

Right
$./manage.py dumpscript appname > dumps/appname_all.py

Right
$./manage.py dumpscript appname.Somemodel > dumps/appname_somemodel.py

4.3.5 RunScript

synopsis Runs a script in the Django context.

Introduction

The runscript command lets you run an arbitrary set of python commands within the Django context. It offers the
same usability and functionality as running a set of commands in shell accessed by:

$ python manage.py shell

Getting Started

This example assumes you have followed the tutorial for Django 1.8+, and created a polls app containing a Question
model. We will create a script that deletes all of the questions from the database.

To get started create a scripts directory in your project root, next to manage.py:

$ mkdir scripts
$ touch scripts/__init__.py

Note: The __init__.py file is necessary so that the folder is picked up as a python package.

Next, create a python file with the name of the script you want to run within the scripts directory:

$ touch scripts/delete_all_questions.py

This file must implement a run() function. This is what gets called when you run the script. You can import any
models or other parts of your django project to use in these scripts.

For example:

4.3. Command Extensions 21

django-extensions Documentation, Release 3.2.3

scripts/delete_all_questions.py

from polls.models import Question

def run():
Fetch all questions
questions = Question.objects.all()
Delete questions
questions.delete()

Note: You can put a script inside a scripts folder in any of your apps too.

Usage

To run any script you use the command runscript with the name of the script that you want to run.

For example:

$ python manage.py runscript delete_all_questions

Note: The command first checks for scripts in your apps i.e. app_name/scripts folder and runs them before checking
for and running scripts in the project_root/scripts folder. You can have multiple scripts with the same name and they
will all be run sequentially.

Passing arguments

You can pass arguments from the command line to your script by passing a space separated list of values with
--script-args. For example:

$ python manage.py runscript delete_all_questions --script-args staleonly

The list of argument values gets passed as arguments to your run() function. For example:

scripts/delete_all_questions.py
from datetime import timedelta

from django.utils import timezone

from polls.models import Question

def run(*args):
Get all questions
questions = Question.objects.all()
if 'staleonly' in args:

Only get questions more than 100 days old
questions = questions.filter(pub_date__lt=timezone.now() -

→˓timedelta(days=100))
Delete questions
questions.delete()

Setting execution directory

You can set scripts execution directory using --chdir option or settings.RUNSCRIPT_CHDIR.
You can also set scripts execution directory policy using --dir-policy option or settings.

22 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

RUNSCRIPT_CHDIR_POLICY.

It can be one of the following:

• none - start all scripts in current directory.

• each - start all scripts in their directories.

• root - start all scripts in BASE_DIR directory.

Assume this simplified directory structure:

django_project_dir/
-first_app/
-scripts/

-first_script.py
-second_app/
-scripts/

-second_script.py
-manage.py
-other_folder/
-some_file.py

Assume you are in other_folder directory. You can set execution directory for both scripts using this command:

$ python ../manage.py runscript first_script second_script --chdir /django_project_
→˓dir/second_app
scripts will be executed from second_app directory

You can run both scripts with NONE policy using this command:

$ python ../manage.py runscript first_script second_script --dir-policy none
scripts will be executed from other_folder directory

You can run both scripts with EACH policy using this command:

$ python ../manage.py runscript first_script second_script --dir-policy each
first_script will be executed from first_app and second script will be executed

→˓from second_app

You can run both scripts with ROOT policy using this command:

$ python ../manage.py runscript first_script second_script --dir-policy root
scripts will be executed from django_project_dir directory

Errors and exit codes

If an exception is encountered the execution of the scripts will stop, a traceback is shown and the command will return
an exit code.

To control the exit-code you can either use CommandError(“something went terribly wrong”, returncode=123) in
your script or has the run(. . .) function return the exit_code. Where any exit code other then 0 will indicate failure,
just like regular shell commands.

This means you can use runscript in your CI/CD pipelines or other automated scripts and it should behave like any
other shell command.

4.3. Command Extensions 23

django-extensions Documentation, Release 3.2.3

Continue on errors

If you want runscript to continue running scripts even if errors occurs you can set -c:

$ python manage.py runscript delete_all_questions another_script --continue-on-error

This will continue running ‘another_script’ even if an exception was raised or exit code was returned in
‘delete_all_questions’.

When all the scripts has been run runscript will exit with the last non-zero exit code.

Note: It is possible to do raise CommandError(. . . , returncode=0) which will lead to an exception with exit code 0.

Debugging

If an exception occurs you will get a traceback by default. You can use CommandError in the same way as with other
custom management commands.

To get a traceback from a CommandError specify --traceback. For example:

$ python manage.py runscript delete_all_questions --traceback

If you do not want to see tracebacks at all you can specify:

$ python manage.py runscript delete_all_questions --no-traceback

4.3.6 export_emails

synopsis export the email addresses for your users in one of many formats

Most Django sites include a registered user base. There are times when you would like to import these e-mail addresses
into other systems (generic mail program, Gmail, Google Docs invites, give edit permissions, LinkedIn Group pre-
approved listing, etc.). The export_emails command extension gives you this ability. Exported users can be filtered by
Group name association.

Example Usage

Export all the addresses in the '"First Last" <my@addr.com>;' format.
$./manage.py export_emails > addresses.txt

Export users from the group 'Attendees' in the linked in pre-approve Group csv
→˓format.
$./manage.py export_emails -g Attendees -f linkedin pycon08.csv

Create a csv file importable by Gmail or Google Docs
$./manage.py export_emails --format=google google.csv

Supported Formats

address

This is the default basic text format. Each entry is on its own line in the format:

24 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

"First Last" <user@host.com>;

This can be used with all known mail programs (that I know about anyway).

google

A CSV (comma separated value) format which Google applications can import. This can be used to import directly into
Gmail, a Gmail mailing group, Google Docs invite (to read), Google Docs grant edit permissions, Google Calendar
invites, etc.

Only two columns are supplied. One for the person’s name and one for the email address. This is also nice for
importing into spreadsheets.

outlook

A CSV (comma separated value) format which Outlook can parse and import. Supplies all the columns that Outlook
‘requires’, but only the name and email address are supplied.

linkedin

A CSV (comma separated value) format which can be imported by LinkedIn Groups to pre-approve a list of people
for joining the group.

This supplies 3 columns: first name, last name, and email address. This is the best generic csv file for importing into
spreadsheets as well.

vcard

A vCard format which Apple Address Book can parse and import.

Settings

There are a couple of settings keys which can be configured in settings.py. Below the default values are shown:

EXPORT_EMAILS_ORDER_BY = ['last_name', 'first_name', 'username', 'email']
EXPORT_EMAILS_FIELDS = ['last_name', 'first_name', 'username', 'email']
EXPORT_EMAILS_FULL_NAME_FUNC = None

EXPORT_EMAILS_ORDER_BY

Specifies the order_by(. . .) clause on the query being done into the database to retrieve the users. This determines the
order of the output.

EXPORT_EMAILS_FIELDS

Specifies which fields will be selected from the database. This is most useful in combination with EX-
PORT_EMAILS_FULL_NAME_FUNC to select other fields you might want to use inside the custom function or
when using a custom User model which does not have fields like ‘first_name’ and ‘last_name’.

4.3. Command Extensions 25

https://www.linkedin.com/static?key=groups_info

django-extensions Documentation, Release 3.2.3

EXPORT_EMAILS_FULL_NAME_FUNC

A function to use to create a full name based on the database fields selected by EX-
PORT_EMAILS_FULL_NAME_FUNC. The default implementation can be looked up in https://github.com/
django-extensions/django-extensions/blob/master/django_extensions/management/commands/export_emails.py#L23

4.3.7 generate_password

synopsis Generates a new password that can be used for a user password.

Introduction

This is a handy command to generate a new password which can be used for a user password. This
uses Django core’s default password generator django.contrib.auth.base_user.BaseUserManager.
make_random_password() to generate a password.

You can specify the length of password with the option --length. If you don’t specify --length, the default
value of make_random_password() is applied.

Usage

Run

$ python manage.py generate_password [--length=<length>]

4.3.8 Graph models

synopsis Renders a graphical overview of your project or specified apps.

Creates a GraphViz dot file for the specified app names based on their models.py. You can pass multiple app names
and they will all be combined into a single model. Output is usually directed to a dot file.

Several options are available: grouping models, including inheritance, excluding models and columns, and changing
the layout when rendering to an output image.

With the latest revisions it’s also possible to specify an output file if pygraphviz is installed and render directly to an
image or other supported file-type.

Selecting a library

You need to select the library to generate the image. You can do so by passing the –pygraphviz or –pydot parameter,
depending on which library you want to use.

When neither of the command line parameters are given the default is to try and load pygraphviz or pydot (in that
order) to generate the image.

To install pygraphviz you usually need to run this command:

$ pip install pygraphviz

It is possible you can’t install it because it needs some C extensions to build. In that case you can try other methods to
install or you can use PyDot.

To install pydot you need to run this command:

26 Chapter 4. Contents

https://github.com/django-extensions/django-extensions/blob/master/django_extensions/management/commands/export_emails.py#L23
https://github.com/django-extensions/django-extensions/blob/master/django_extensions/management/commands/export_emails.py#L23
https://www.graphviz.org/
https://pygraphviz.github.io/

django-extensions Documentation, Release 3.2.3

$ pip install pyparsing pydot

Installation should be fast and easy. Remember to install this exact version of pyparsing, otherwise it’s possible you
get this error:

Couldn’t import dot_parser, loading of dot files will not be possible.

Default Settings

The option GRAPH_MODELS = {} can be used in the settings file to specify default options:

GRAPH_MODELS = {
'all_applications': True,
'group_models': True,

}

It uses the same names as on the command line only with the leading two dashes removed and the other dashes replaced
by underscores. You can specify a list of applications with the app_labels key:

GRAPH_MODELS = {
'app_labels': ["myapp1", "myapp2", "auth"],

}

Templates

Django templates are used to generate the dot code. This in turn can be drawn into a image by libraries like pygraphviz
or pydot. You can extend or override the templates if needed.

Templates used:

• django_extensions/graph_models/digraph.dot

• django_extensions/graph_models/label.dot

• django_extensions/graph_models/relation.dot

Documentation on how to create dot files can be found here: https://www.graphviz.org/documentation/

Warning: Modifying Django’s default templates behaviour might break graph_models

Please be aware that if you use any template_loaders or extensions that change the way templates are rendered that
this can cause graph_models to fail.

An example of this is the Django app django-template-minifier this automatically removed the newlines be-
fore/after template tags even for non-HTML templates which leads to a malformed file.

Example Usage

With django-extensions installed you can create a dot-file or an image by using the graph_models command:

Create a dot file
$./manage.py graph_models -a > my_project.dot

4.3. Command Extensions 27

https://www.graphviz.org/documentation/

django-extensions Documentation, Release 3.2.3

Create a PNG image file called my_project_visualized.png with application grouping
$./manage.py graph_models -a -g -o my_project_visualized.png

Same example but with explicit selection of pygraphviz or pydot
$./manage.py graph_models --pygraphviz -a -g -o my_project_visualized.png
$./manage.py graph_models --pydot -a -g -o my_project_visualized.png

Create a dot file for only the 'foo' and 'bar' applications of your project
$./manage.py graph_models foo bar > my_project.dot

Create a graph for only certain models
$./manage.py graph_models -a -I Foo,Bar -o my_project_subsystem.png

Create a graph excluding certain models
$./manage.py graph_models -a -X Foo,Bar -o my_project_sans_foo_bar.png

Create a graph including models matching a given pattern and excluding some of them
It will first select the included ones, then filter out the ones to exclude
$./manage.py graph_models -a -I Product* -X *Meta -o my_project_products_sans_meta.
→˓png

Create a graph without showing its edges' labels
$./manage.py graph_models -a --hide-edge-labels -o my_project_sans_foo_bar.png

Create a graph with 'normal' arrow shape for relations
$./manage.py graph_models -a --arrow-shape normal -o my_project_sans_foo_bar.png

Create a graph with colored edges for relations with on_delete settings
$./manage.py graph_models -a --color-code-deletions -o my_project_colored.png

Create a graph with different layout direction,
supported directions: "TB", "LR", "BT", "RL"
$./manage.py graph_models -a --rankdir BT -o my_project_sans_foo_bar.png

4.3.9 list_model_info

synopsis Lists out all the fields and methods for models in installed apps.

Introduction

When working with large projects or when returning to a code base after some time away, it can be challenging to
remember all of the fields and methods associated with your models. This command makes it easy to see:

• what fields are available

• how they are referred to in queries

• each field’s class

• each field’s representation in the database

• what methods are available

• method signatures

28 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

Commandline arguments

You can configure the output in a number of ways.

Show each field's class
$./manage.py list_model_info --field-class

Show each field's database type representation
$./manage.py list_model_info --db-type

Show each method's signature
$./manage.py list_model_info --signature

Show all model methods, including private methods and django's default methods
$./manage.py list_model_info --all-methods

Output only information for a single model, specifying the app and model using dot
→˓notation
$./manage.py list_model_info --model users.User

You can combine arguments. for instance, to list all methods and show the method signatures for the User model
within the users app:

$./manage.py list_model_info --all --signature --model users.User

Settings Configuration

You can specify default values in your settings.py to simplify running this command.

Tip: Commandline arguments override the following settings, allowing you to change options on the fly.

To show each field’s class:

MODEL_INFO_FIELD_CLASS = True

To show each field’s database type representation:

MODEL_INFO_DB_TYPE = True

To show each method’s signature:

MODEL_INFO_SIGNATURE = True

To show all model methods, including private methods and django’s default methods:

MODEL_INFO_ALL_METHODS = True

To output only information for a single model, specify the app and model using dot notation:

MODEL_INFO_MODEL = 'users.User'

4.3. Command Extensions 29

django-extensions Documentation, Release 3.2.3

4.3.10 list_signals

synopsis Lists all signals defined in the project grouped by model and signal type

Example Usage

With django-extensions installed you can review all defined handlers using list_signals command:

As above but non-interactive
$./manage.py list_signals

4.3.11 managestate

synopsis Saves current applied migrations to a file or applies migrations from this file.

The managestate command fetches last applied migrations from a specified database and saves them to a specified
file. After that, you may easily apply saved migrations. The advantage of this approach is that you may have at hand
several database states and quickly switch between them.

Why?

While you develop several features or fix some bugs at the same time you often meet the situation when you need to
apply or unapply database migrations before you check out to another feature/bug branch. You always need to view
current migrations by showmigrations, then apply or unapply it manually using migrate and there is no problem if
you work with one Django app. But when there is more than one, it starts to annoy. To forget about the problem and
quickly switch between branches use the managestate command.

How?

To dump current migrations use:

$./manage.py managestate dump

A state will be saved to managestate.json just about the following:

{
"default": {
"admin": "0003_logentry_add_action_flag_choices",
"auth": "0012_alter_user_first_name_max_length",
"contenttypes": "0002_remove_content_type_name",
"sessions": "0001_initial",
"sites": "0002_alter_domain_unique",
"myapp": "zero"

},
"updated_at": "2021-06-27 10:42:50.364070"

}

As you see, migrations have been saved as the state called “default”. You can specify it using the positional argument:

$./manage.py managestate dump my_feature_branch

30 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

Then migrations will be added to managestate.json under the key “my_feature_branch”. To change the filename use
-f or –filename flag.

When you load a state from a file, you may also use all arguments defined for the migrate command.

Examples

Save an initial database state of the branch “master/main” before developing features:

$./manage.py managestate dump master

Check out to your branch, develop your feature, and dump its state when you are going to get reviewed:

$./manage.py managestate dump super-feature

Check out to the “master” branch back and rollback a database state with just one command:

$./manage.py managestate load master

If you need to add some improvements to your feature, just use:

$./manage.py managestate load super-feature

4.3.12 merge_model_instances

synopsis Merges duplicate model instances by reassigning related model references to a chosen primary
model instance.

Note: This management command is in beta. Use with care, and make sure to test thoroughly before implementing.

Allows the user to choose a model to de-duplicate and a field on which to de-duplicate model instances. Provides
an interactive session with the user to select the model to de-duplicate and the field on which to de-duplicate model
instances. After merging model instances to one instance, deletes the merged model instances. Use with care!

Example Usage

With django-extensions installed you merge model instances using the merge_model_instances command:

Delete leftover migrations from the first squashed migration found in myapp
$./manage.py merge_model_instances

4.3.13 print_settings

synopsis Django management command similar to diffsettings but shows selected active Django
settings or all if no args passed.

Introduction

Django comes with a diffsettings command that shows how your project’s settings differ from the Django
defaults. Sometimes it is useful to just see the settings that are in effect for your project. This is particularly true if you
have a more complex system for settings than just a single settings.py file. For example, you might have settings
files that import other settings file, such as dev, test, and production settings files that source a base settings file.

4.3. Command Extensions 31

django-extensions Documentation, Release 3.2.3

This command also supports dumping the data in a few different formats.

More Info

The simplest way to run it is with no arguments:

$ python manage.py print_settings

Some variations:

$ python manage.py print_settings --format=json
$ python manage.py print_settings --format=yaml # Requires PyYAML
$ python manage.py print_settings --format=pprint
$ python manage.py print_settings --format=text
$ python manage.py print_settings --format=value

Show just selected settings:

$ python manage.py print_settings DEBUG INSTALLED_APPS
$ python manage.py print_settings DEBUG INSTALLED_APPS --format=pprint
$ python manage.py print_settings INSTALLED_APPS --format=value

It is also possible to use shell-style wildcards:

$ python manage.py print_settings TIME*
$ python manage.py print_settings *_DIRS STATIC*
$ python manage.py print_settings INSTALLED_????

Yielding an error when a settings does not exist:

$./manage.py print_settings -f INSTALLED_APPZ
CommandError: INSTALLED_APPZ not found in settings.

For more info, take a look at the built-in help:

$ python manage.py print_settings --help
usage: manage.py print_settings [-h] [-f] [--format FORMAT] [--indent INDENT] [--
→˓version] [-v {0,1,2,3}]

[--settings SETTINGS] [--pythonpath PYTHONPATH] [--
→˓traceback] [--no-color]

[--force-color] [--skip-checks]
[setting [setting ...]]

Print the active Django settings.

positional arguments:
setting Specifies setting to be printed.

optional arguments:
-h, --help show this help message and exit
-f, --fail Fail if invalid setting name is given.
--format FORMAT Specifies output format.
--indent INDENT Specifies indent level for JSON and YAML
--version show program's version number and exit
-v {0,1,2,3}, --verbosity {0,1,2,3}

Verbosity level; 0=minimal output, 1=normal output, 2=verbose
→˓output, 3=very verbose output

(continues on next page)

32 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

(continued from previous page)

--settings SETTINGS The Python path to a settings module, e.g. "myproject.
→˓settings.main". If this isn't provided,

the DJANGO_SETTINGS_MODULE environment variable will be used.
--pythonpath PYTHONPATH

A directory to add to the Python path, e.g. "/home/
→˓djangoprojects/myproject".
--traceback Raise on CommandError exceptions
--no-color Don't colorize the command output.
--force-color Force colorization of the command output.
--skip-checks Skip system checks.

4.3.14 reset_db

synopsis Fully resets your database by running DROP DATABASE and CREATE DATABASE

Django command that resets your Django database, removing all data from all tables. This allows you to run all
migrations again.

By default the command will prompt you to confirm that all data will be deleted. This can be turned off with the
--noinput-argument.

Supported engines

The command detects whether you’re using a SQLite, MySQL, or Postgres database by looking up your Django
database engine in the following lists.

DEFAULT_SQLITE_ENGINES = (
'django.db.backends.sqlite3',
'django.db.backends.spatialite',

)
DEFAULT_MYSQL_ENGINES = (

'django.db.backends.mysql',
'django.contrib.gis.db.backends.mysql',
'mysql.connector.django',

)
DEFAULT_POSTGRESQL_ENGINES = (

'django.db.backends.postgresql',
'django.db.backends.postgresql_psycopg2',
'django.db.backends.postgis',
'django.contrib.gis.db.backends.postgis',
'psqlextra.backend',
'django_zero_downtime_migrations.backends.postgres',
'django_zero_downtime_migrations.backends.postgis',

)

If the engine you’re using is not listed above, check the optional settings section below.

Example Usage

Reset the DB so that it contains no data and migrations can be run again
$./manage.py reset_db mybucket

4.3. Command Extensions 33

django-extensions Documentation, Release 3.2.3

Don't ask for a confirmation before doing the reset
$./manage.py reset_db --noinput

Use a different user and password than the one from settings.py
$./manage.py reset_db --user db_root --password H4rd2Guess

Optional settings

It is possible to use a Django DB engine not in the lists above – to do that add the approriate setting as shown below
to your Django settings file:

settings.py
DJANGO_EXTENSIONS_RESET_DB_SQLITE_ENGINES = ['your_custom_sqlite_engine']
DJANGO_EXTENSIONS_RESET_DB_MYSQL_ENGINES = ['your_custom_mysql_engine']
DJANGO_EXTENSIONS_RESET_DB_POSTGRESQL_ENGINES = ['your_custom_postgres_engine']

4.3.15 RunProfileServer

We recommend that before you start profiling any language or framework you learn enough about it so that you feel
comfortable with digging into its internals.

Without sufficient knowledge it will not only be (very) hard but you’re likely to make wrong assumptions (and fixes).
As a rule of thumb, clean, well written code will help you a lot more than overzealous micro-optimizations will.

This document is work in progress. If you feel you can help with better/clearer or additional information about
profiling Django please leave a comment.

Introduction

runprofileserver starts Django’s runserver command with hotshot/profiling tools enabled. It will save .prof files con-
taining the profiling information into the –prof-path directory. Note that for each request made one profile data file is
saved.

By default the profile-data-files are saved in /tmp use the –prof-path option to specify your own target directory. Saving
the data in a meaningful directory structure helps to keep your profile data organized and keeps /tmp uncluttered. (Yes
this probably malfunctions systems such as Windows where /tmp does not exist)

To define profile filenames use –prof-file option. Default format is “{path}.{duration:06d}ms.{time}” (Python Format
Specification is used).

Examples:

• “{time}-{path}-{duration}ms” - to order profile-data-files by request time

• “{duration:06d}ms.{path}.{time}” - to order by request duration

Profiler choice

runprofileserver supports two profilers: hotshot and cProfile. Both come with the standard Python library but cProfile
is more recent and may not be available on all systems. For this reason, hotshot is the default profiler.

However, hotshot is not maintained anymore and using cProfile is usually the recommended way. If it is available on
your system, you can use it with the option --use-cprofile.

Example:

34 Chapter 4. Contents

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/2/library/profile.html#introduction-to-the-profilers

django-extensions Documentation, Release 3.2.3

$ mkdir /tmp/my-profile-data
$./manage.py runprofileserver --use-cprofile --prof-path=/tmp/my-profile-data

If you used the default profiler but are not able to open the profiling results with the pstats module or with your
profiling GUI of choice because of an error “ValueError: bad marshal data (unknown type code)”, try using cProfile
instead.

KCacheGrind

Recent versions of runprofileserver have an option to save the profile data into a KCacheGrind compatible format. So
you can use the excellent KCacheGrind tool for analyzing the profile data.

Example:

$ mkdir /tmp/my-profile-data
$./manage.py runprofileserver --kcachegrind --prof-path=/tmp/my-profile-data
Validating models...
0 errors found

Django version X.Y.Z, using settings 'complete_project.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
[13/Nov/2008 06:29:38] "GET / HTTP/1.1" 200 41107
[13/Nov/2008 06:29:39] "GET /site_media/base.css?743 HTTP/1.1" 200 17227
[13/Nov/2008 06:29:39] "GET /site_media/logo.png HTTP/1.1" 200 3474
[13/Nov/2008 06:29:39] "GET /site_media/jquery.js HTTP/1.1" 200 31033
[13/Nov/2008 06:29:39] "GET /site_media/heading.png HTTP/1.1" 200 247
[13/Nov/2008 06:29:39] "GET /site_media/base.js HTTP/1.1" 200 751
<ctrl-c>
$ kcachegrind /tmp/my-profile-data/root.12574391.592.prof

Links

• https://code.djangoproject.com/wiki/ProfilingDjango

• https://rk.edu.pl/en/django-profiling-hotshot-and-kcachegrind/

• https://simonwillison.net/2008/May/22/debugging/

4.3.16 RunServerPlus

synopsis RunServerPlus-typical runserver with Werkzeug debugger baked in

Introduction

This item requires that you have the Werkzeug WSGI utilities installed. Included with Werkzeug is a kick ass debugger
that renders nice debugging tracebacks and adds an AJAX based debugger (which allows code execution in the context
of the traceback’s frames). Additionally it provides a nice access view to the source code.

Getting Started

To get started we just use the runserver_plus command instead of the normal runserver command:

4.3. Command Extensions 35

https://code.djangoproject.com/wiki/ProfilingDjango
https://rk.edu.pl/en/django-profiling-hotshot-and-kcachegrind/
https://simonwillison.net/2008/May/22/debugging/
https://werkzeug.palletsprojects.com/

django-extensions Documentation, Release 3.2.3

$ python manage.py runserver_plus

* Running on http://127.0.0.1:8000/

* Restarting with reloader...

Validating models...
0 errors found

Django version X.Y.Z, using settings 'screencasts.settings'
Development server is running at http://127.0.0.1:8000/
Using the Werkzeug debugger (https://werkzeug.palletsprojects.com/)
Quit the server with CONTROL-C.

Note: all normal runserver options apply. In other words, if you need to change the port number or the host information,
you can do so like you would normally.

Usage

Instead of the default Django traceback page, the Werkzeug traceback page will be shown when an exception occurs.

Along with the typical traceback information we have a couple of options. These options appear when hovering over
a particular traceback line. Notice that two buttons appear to the right:

The options are:

36 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

View Source

This displays the source underneath the traceback:

Being able to view the source file is handy because it provides more context information around the error. The actual
traceback areas are highlighted so they are easy to spot.

One awkward aspect of the UI is that the page is not scrolled to the bottom. At first I thought nothing was happening
because of this.

Interactive Debugging Console

Clicking on this button opens up a new pane under the traceback line you’re on. This is the money shot:

An ajax based console appears in the pane and you can start debugging. Notice in the screenshot above I did a print
environ to see what was in the environment parameter coming into the function.

4.3. Command Extensions 37

django-extensions Documentation, Release 3.2.3

WARNING: This should never be used in any kind of production environment. Not even for a quick problem check. I
cannot emphasize this enough. The interactive debugger allows you to evaluate python code right against the server.
You’ve been warned.

SSL

runserver_plus also supports SSL, so that you can easily debug bugs that pop up when https is used. To use SSL
simply provide a file name for certificates; a key and certificate file will be automatically generated:

$ python manage.py runserver_plus --cert-file cert.crt
Validating models...
0 errors found

Django version X.Y.Z, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Using the Werkzeug debugger (https://werkzeug.palletsprojects.com/)
Quit the server with CONTROL-C.

* Running on https://127.0.0.1:8000/

* Restarting with reloader
Validating models...
0 errors found

Django version X.Y.Z, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Using the Werkzeug debugger (https://werkzeug.palletsprojects.com/)
Quit the server with CONTROL-C.

After running this command, your web application can be accessed through https://127.0.0.1:8000.

You will also find that two files are created in the current working directory: a key file and a certificate file. If you
run the above command again, these certificate files will be reused so that you do not have to keep accepting the
self-generated certificates from your browser every time. You can also provide a specific file for the certificate to be
used if you already have one:

$ python manage.py runserver_plus --cert-file /tmp/cert.crt

Note that you need the OpenSSL library to use SSL, and Werkzeug 0.9 or later if you want to reuse existing certificates.

To install OpenSSL:

$ pip install pyOpenSSL

Certificates paths

You can configure different paths to .crt and .key files. At least one of --cert-file or --key-file must be
defined to use SSL.

You can set path to .crt file using --cert-file option or deprecated --cert option which is currently an alias
for --cert-file. If this option is not set than runserver_plus assumes that, this file is in the same directory as file
from --key-file option.

You can set path to .key file using --key-file option. If this option is not set than runserver_plus assumes that,
this file is in the same directory as file from --cert-file option.

If you want to create new files, than you can pass file name without extension. Proper files with this name and .crt and
.key extensions will be created.

38 Chapter 4. Contents

https://127.0.0.1:8000

django-extensions Documentation, Release 3.2.3

Configuration

The RUNSERVERPLUS_SERVER_ADDRESS_PORT setting can be configured to specify which address and port the
development server should bind to.

If you find yourself frequently starting the server with:

$ python manage.py runserver_plus 0.0.0.0:8000

You can use settings to automatically default your development to an address/port:

RUNSERVERPLUS_SERVER_ADDRESS_PORT = '0.0.0.0:8000'

To ensure Werkzeug can log to the console, you may need to add the following to your settings:

LOGGING = {
...
'handlers': {

...
'console': {

'level': 'DEBUG',
'class': 'logging.StreamHandler',

},
},
'loggers': {

...
'werkzeug': {

'handlers': ['console'],
'level': 'DEBUG',
'propagate': True,

},
},

}

Other configuration options and their defaults include:

Truncate SQL queries to this many characters (None means no truncation)
RUNSERVER_PLUS_PRINT_SQL_TRUNCATE = 1000

After how many seconds auto-reload should scan for updates in poller-mode
RUNSERVERPLUS_POLLER_RELOADER_INTERVAL = 1

Werkzeug reloader type [auto, watchdog, or stat]
RUNSERVERPLUS_POLLER_RELOADER_TYPE = 'auto'

Add extra files to watch
RUNSERVER_PLUS_EXTRA_FILES = []

Do not watch files matching any of these patterns
RUNSERVER_PLUS_EXCLUDE_PATTERNS = []

IO Calls and CPU Usage

As noted in gh625 runserver_plus can be seen to use a lot of CPU and generate many I/O when idle.

This is due to the way Werkzeug has implemented the auto reload capability. It supports two ways of doing auto
reloading either via stat polling or file system events.

4.3. Command Extensions 39

https://github.com/django-extensions/django-extensions/issues/625
https://werkzeug.palletsprojects.com/

django-extensions Documentation, Release 3.2.3

The stat polling approach is pretty brute force and continously issues stat system calls which causes the CPU and IO
load.

If possible try to install the Watchdog package, this should automatically cause Werkzeug to use file system events
whenever possible.

You can read more about this in Werkzeug documentation

You can also increase the poll interval when using stat polling from the default of 1 second. This will decrease the
CPU load at the expense of file edits taking longer to pick up.

This can be set two ways, in the django settings file:

RUNSERVERPLUS_POLLER_RELOADER_INTERVAL = 5

or as a commad line argument:

$ python manage.py runserver_plus --reloader-interval 5

Debugger PIN

The following text about the debugger PIN is taken verbatim from the Werkzeug documentation about its
debugger PIN.

Starting with Werkzeug 0.11 the debugger is additionally protected by a PIN. This is a security helper to make it less
likely for the debugger to be exploited in production as it has happened to people to keep the debugger active. The
PIN based authentication is enabled by default.

When the debugger comes up, on first usage it will prompt for a PIN that is printed to the command line. The
PIN is generated in a stable way that is specific to the project. In some situations it might be not possible to gen-
erate a stable PIN between restarts in which case an explicit PIN can be provided through the environment variable
WERKZEUG_DEBUG_PIN. This can be set to a number and will become the PIN. This variable can also be set to
the value off to disable the PIN check entirely.

The PIN can also be disabled by passing the argument --nopin when calling the runserver_plus command.

If the PIN is entered too many times incorrectly the server needs to be restarted.

This feature is not supposed to entirely secure the debugger. It’s intended to make it harder for an attacker to
exploit the debugger. Never enable the debugger in production.

4.3.17 sync_s3

synopsis sync your MEDIA_ROOT and STATIC_ROOT folders to S3

Django command that scans all files in your settings.MEDIA_ROOT and settings.STATIC_ROOT folders, then up-
loads them to S3 with the same directory structure.

This command can optionally do the following but it is off by default:

• gzip compress any CSS and Javascript files it finds and adds the appropriate ‘Content-Encoding’ header.

• set a far future ‘Expires’ header for optimal caching.

• upload only media or static files.

• use any other provider compatible with Amazon S3.

• set other than ‘public-read’ ACL.

40 Chapter 4. Contents

https://pypi.python.org/pypi/watchdog
https://werkzeug.palletsprojects.com/
https://werkzeug.palletsprojects.com/serving/#reloader
https://werkzeug.palletsprojects.com/en/2.2.x/debug/#debugger-pin
https://werkzeug.palletsprojects.com/en/2.2.x/debug/#debugger-pin

django-extensions Documentation, Release 3.2.3

Example Usage

Upload files to S3 into the bucket 'mybucket'
$./manage.py sync_s3 mybucket

Upload files to S3 into the bucket 'mybucket' and enable gzipping CSS/JS files and
→˓setting of a far future expires header
$./manage.py sync_s3 mybucket --gzip --expires

Upload only media files to S3 into the bucket 'mybucket'
$./manage.py sync_s3 mybucket --media-only # or --static-only

Upload only media files to a S3 compatible provider into the bucket 'mybucket' and
→˓set private file ACLs
$./manage.py sync_s3 mybucket --media-only --s3host=cs.example.com --acl=private

Required libraries and settings

This management command requires the boto library and was tested with version 1.4c:

https://github.com/boto/boto

It also requires an account with Amazon Web Services (AWS) and the AWS S3 keys. Bucket name is required and
cannot be empty. The keys and bucket name are added to your settings.py file, for example:

settings.py
AWS_ACCESS_KEY_ID = ''
AWS_SECRET_ACCESS_KEY = ''
AWS_BUCKET_NAME = 'bucket'

Optional settings

It is possible to customize sync_s3 directly from django settings file, for example:

settings.py
AWS_S3_HOST = 'cs.example.com'
AWS_DEFAULT_ACL = 'private'
SYNC_S3_PREFIX = 'some_prefix'
FILTER_LIST = 'dir1, dir2'
AWS_CLOUDFRONT_DISTRIBUTION = 'E27LVI50CSW06W'
SYNC_S3_RENAME_GZIP_EXT = '.gz'

4.3.18 syncdata

synopsis Makes the current database have the same data as the fixture(s), no more, no less.

Introduction

Django command similar to ‘loaddata’ but also deletes. After ‘syncdata’ has run, the database will have the same data
as the fixture - anything missing will be added, anything different will be updated, and anything extra will be deleted.

4.3. Command Extensions 41

https://github.com/boto/boto

django-extensions Documentation, Release 3.2.3

Usage

Tip: Command will loop over fixtures inside installed apps and pathes defined in FIXTURE_DIRS.

Assuming that you’ve got sample.json under fixtures directory in one of your INSTALLED_APPS:

$ python manage.py syncdata sample.json

If you want to keep old records use --skip-remove option:

$ python manage syncdata sample.xml --skip-remove

You can provide full path to your fixtures file like:

$ python manage syncdata /var/fixtures/sample.json

4.3.19 sqldiff

synopsis Prints the ALTER TABLE statements for the given appnames.

Django command that scans all models for the given appnames and compares their database schema with the real
database tables.

It indicates how columns in the database are different from the SQL that would be generated by Django. This command
is not a database migration tool, though it might certainly be of help during migrations. Its purpose is to show the
current differences as a way to check or debug your models compared to the real database tables and columns.

Supported Databases

Currently the following databases are supported:

• PostgreSQL

• Sqlite3

• MySQL

• Oracle

Patches to support other databases are welcome! :-)

Exit Codes

Exit status is 0 if inputs are the same, 1 if different, 2 if trouble.

Example Usage

View SQL differences for all installed applications
$./manage.py sqldiff -a

View SQL differences for all installed applications using text instead of SQL
$./manage.py sqldiff -a -t

42 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

4.3.20 sqlcreate

synopsis Helps you setup your database(s) more easily

Introduction

Stop creating databases by hand. Your settings.py file already contains the correct information, so DRY.

Usage

$ python manage.py sqlcreate [–database=<databasename>] | <my_database_shell_command>

It will spit out SQL which you can review (if you want). Ultimately you want to pipe it into the database shell
command of your choice.

If there were a good way to ensure that the user in the database settings had the proper permissions, we could submit
the commands straight to the database. However, due to the nature of this portion of the project setup, that will never
happen.

Example

PostgreSQL

$./manage.py sqlcreate [–database=<databasename>] | psql -U <db_administrator> -W

Note: If USER or PASSWORD are empty string or None, the sqlcreate assumes that unix domain socket connection
mode is being used, and because of that the SQL clauses CREATE USER and privilege grants to the database and
database user are not generated.

MySQL

$./manage.py sqlcreate [–database=<databasename>] | mysql -u <db_administrator> -p

Known Issues

• CREATE DATABASE is not SQL standard so might not work everywhere.

• When using fallback user is not created and password is not set. But it does try to do a GRANT to the database
user.

• Missing options for tablespaces, etc.

4.3.21 sqldsn

synopsis Prints Data Source Name connection string on stdout

4.3. Command Extensions 43

django-extensions Documentation, Release 3.2.3

Supported Databases

Currently the following databases are supported:

• PostgreSQL (psycopg2, psycopg3, or postgis)

• Sqlite3

• MySQL

Patches to support other databases are welcome! :-)

Supported Styles

Currently the following databases are supported:

Style PostgreSQL MySQL Sqlite3 Description
args Y command-line arguments
filename Y filename
keyvalue Y Y key-value pairs (legacy)
kwargs Y Python keyword arguments
pgpass Y .pgpass format
uri Y Y Y (See dj-database-url)

Exit Codes

Exit status is 0 unless invalid options were given.

Example Usage

Prints the DSN for the default database
$./manage.py sqldsn

Prints the DSN for all databases
$./manage.py sqldsn --all

Print the DSN for database named 'slave'
$./manage.py sqldsn --database=slave

Print all DSN styles available for the default database
$./manage.py sqldsn --style=all

Print the URI for the default database
$./manage.py sqldsn -q --style=uri

Create .pgpass file for default database by using the quiet option
$./manage.py sqldsn -q --style=pgpass > .pgpass

4.3.22 validate_templates

synopsis Checks templates on syntax or compile errors.

44 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

This will catch any invalid Django template syntax, for example:

{% foobar %}

{% comment %}
This throws this error:
TemplateSyntaxError Invalid block tag on line 1: 'foobar'. Did you forget to register
→˓or load this tag?
{% endcomment %}

Note that this will not catch invalid HTML, only errors in the Django template syntax used.

Options

verbosity

A higher verbosity level will print out all the files that are processed instead of only the ones that contain errors.

break

Do not continue scanning other templates after the first failure.

ignore-app

Ignore this app (can be used multiple times).

includes

Use -i (can be used multiple times) to add directories to the TEMPLATE DIRS.

no-apps

Do not automatically include app template directories.

Settings

VALIDATE_TEMPLATES_IGNORE_APPS

Ignore the following apps

VALIDATE_TEMPLATES_IGNORES

Ignore file names which matches these patterns. Matching is done via fnmatch.

4.3. Command Extensions 45

django-extensions Documentation, Release 3.2.3

VALIDATE_TEMPLATES_EXTRA_TEMPLATE_DIRS

You can use VALIDATE_TEMPLATES_EXTRA_TEMPLATE_DIRS to include a number of template dirs by default
directly from the settings file. This can be useful for situations where TEMPLATE DIRS is dynamically generated or
switched in middleware, or when you have other template dirs for external applications like celery, and you want to
check those as well.

Usage Example

./manage.py validate_templates

You can also integrate it with your tests, like this:

import unittest
from django.core.management import call_command

class MyTests(unittest.TestCase):
def test_validate_templates(self):

call_command("validate_templates")
This throws an error if it fails to validate

4.3.23 admin_generator

synopsis Generate automatic Django Admin classes by providing an app name. Outputs source code at
STDOUT.

Generating automatically the admin for a given app

You have to provide the app_name you want the admin to be generated.

$ python manage.py admin_generator <your_app_name>

Example

Given the app name “brody”, with the models:

from django.contrib.auth import get_user_model
from django.contrib.auth.models import User
from django.db import models
from django.utils.translation import gettext_lazy as _
from isbn_field import ISBNField

class Author(models.Model):
first_name = models.CharField(max_length=30, verbose_name=_('First name'))
last_name = models.CharField(max_length=40, verbose_name=_('Last name'))

def __str__(self):
return '{} {}'.format(self.first_name, self.last_name)

class Meta:
(continues on next page)

46 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

(continued from previous page)

verbose_name = _('Author')
verbose_name_plural = _('Authors')

class Tag(models.Model):
word = models.CharField(max_length=35, verbose_name=_('Word'))
slug = models.CharField(max_length=50, verbose_name=_('Slug'))

def __str__(self):
return self.word

class Meta:
verbose_name = _('Tag')
verbose_name_plural = _('Tags')

class Book(models.Model):
title = models.CharField(max_length=40, verbose_name=_('Title'))
cover = models.ImageField(upload_to='book-covers', verbose_name=_('Cover'),

→˓blank=True)
tags = models.ManyToManyField(Tag, verbose_name=_('Tags'), related_name='books')
authors = models.ManyToManyField(Author, verbose_name=_('Authors'), related_name=

→˓'books')
publication_date = models.DateField(verbose_name=_('Publication date'))
isbn = ISBNField(verbose_name=_('ISBN code'))

def __str__(self):
return self.title

class Meta:
verbose_name = _('Book')
verbose_name_plural = _('Books')

class Borrow(models.Model):
user = models.OneToOneField(get_user_model(), verbose_name=_('Usuario'), on_

→˓delete=models.PROTECT)
borrow_date = models.DateField(verbose_name=_('Borrow date'))
returned_date = models.DateField(verbose_name=_('Returned date'), blank=True,

→˓null=True)
book = models.ForeignKey(Book, verbose_name=_('Book'), on_delete=models.PROTECT)

class Meta:
verbose_name = _('Borrow')
verbose_name_plural = _('Borrows')

def __str__(self):
return '{}_{}'.format(self.user, self.borrow_date)

the following command:

$ python manage.py admin_generator brody

will output to STDOUT the following code:

-*- coding: utf-8 -*-
from django.contrib import admin

(continues on next page)

4.3. Command Extensions 47

django-extensions Documentation, Release 3.2.3

(continued from previous page)

from .models import Author, Tag, Book, Borrow

@admin.register(Author)
class AuthorAdmin(admin.ModelAdmin):

list_display = ('id', 'first_name', 'last_name')

@admin.register(Tag)
class TagAdmin(admin.ModelAdmin):

list_display = ('id', 'word', 'slug')
search_fields = ('slug',)

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):

list_display = ('id', 'title', 'cover', 'publication_date', 'isbn')
list_filter = ('publication_date',)
raw_id_fields = ('tags', 'authors')

@admin.register(Borrow)
class BorrowAdmin(admin.ModelAdmin):

list_display = ('id', 'user', 'borrow_date', 'returned_date', 'book')
list_filter = ('user', 'borrow_date', 'returned_date', 'book')

• shell_plus - An enhanced version of the Django shell. It will autoload all your models making it easy to work
with the ORM right away.

• admin_generator - Generate automatic Django Admin classes by providing an app name. Outputs source code
at STDOUT.

• clean_pyc - Remove all python bytecode compiled files from the project

• create_command - Creates a command extension directory structure within the specified application. This makes
it easy to get started with adding a command extension to your application.

• create_template_tags - Creates a template tag directory structure within the specified application.

• create_jobs - Creates a Django jobs command directory structure for the given app name in the current directory.
This is part of the impressive jobs system.

• clear_cache - Clear django cache, useful when testing or deploying.

• compile_pyc - Compile python bytecode files for the project.

• describe_form - Used to display a form definition for a model. Copy and paste the contents into your forms.py
and you’re ready to go.

• delete_squashed_migrations - Deletes leftover migrations after squashing and converts squashed migration to a
normal one.

• dumpscript - Generates a Python script that will repopulate the database using objects. The advantage of this
approach is that it is easy to understand, and more flexible than directly populating the database, or using XML.

• export_emails - export the email addresses for your users in one of many formats. Currently supports Address,
Google, Outlook, LinkedIn, and VCard formats.

• find_template - Finds the location of the given template by resolving its path

• generate_secret_key - Creates a new secret key that you can put in your settings.py module.

48 Chapter 4. Contents

export_emails.html

django-extensions Documentation, Release 3.2.3

• graph_models - Creates a GraphViz dot file. You need to send this output to a file yourself. Great for graphing
your models. Pass multiple application names to combine all the models into a single dot file.

• list_model_info - Lists out all the fields and methods for models in installed apps. This is helpful when you
don’t remember how to refer to a related field or want to quickly identify the fields and methods available in a
particular model.

• mail_debug - Starts a mail server which echos out the contents of the email instead of sending it.

• merge_model_instances - Merges duplicate model instances by reassigning related model references to a chosen
primary model instance.

• notes - Show all annotations like TODO, FIXME, BUG, HACK, WARNING, NOTE or XXX in your py and
HTML files.

• passwd - DEPRECATED: Use Django’s changepassword.

• pipchecker - Scan pip requirement file(s)s for out-of-date packages. Similar to pip list -o which used
installed packages (in virtualenv) instead of requirements file(s).

• print_settings - Similar to diffsettings but shows selected active Django settings or all if no args passed.

• print_user_for_session - Print the user information for the provided session key. this is very helpful when trying
to track down the person who experienced a site crash. It seems this works only if setting SESSION_ENGINE
is 'django.contrib.sessions.backends.db' (default value).

• drop_test_database - Drops the test database. Usefull when running Django test via some automated system
(BuildBot, Jenkins, etc) and making sure that the test database is always dropped at the end.

• raise_test_exception - Raises a test exception via command. Useful for debugging error reporters such as Sentry.

• reset_db - Resets a database (currently sqlite3, mysql, postgres). Uses “DROP DATABASE” and “CREATE
DATABASE”.

• runjob - Run a single maintenance job. Part of the jobs system.

• runjobs - Runs scheduled maintenance jobs. Specify hourly, daily, weekly, monthly. Part of the jobs system.

• runprofileserver - Starts runserver with hotshot/profiling tools enabled. I haven’t had a chance to check this one
out, but it looks really cool.

• runscript - Runs a script in the django context.

• runserver_plus - The standard runserver stuff but with the Werkzeug debugger baked in. Requires Werkzeug.
This one kicks ass.

• set_fake_emails - Give all users a new email based on their account data (“%(username)s@example.com” by
default). Possible parameters are: username, first_name, last_name. DEBUG only

• set_fake_passwords - Sets all user passwords to a common value (password by default). DEBUG only.

• show_template_tags - Displays template tags and filters available in the current project.

• show_urls - Displays the url routes that are defined in your project. Very crude at this point.

• sqldiff - Prints the (approximated) difference between an app’s models and what is in the database. This is very
nice, but also very experimental at the moment. It can not catch everything but it’s a great sanity check.

• sqlcreate - Generates the SQL to create your database for you, as specified in settings.py.

• sqldsn - Reads the Django settings and extracts the parameters needed to connect to databases using other
programs.

• sync_s3 - Copies files found in settings.MEDIA_ROOT to S3. Optionally can also gzip CSS and Javascript files
and set the Content-Encoding header, and also set a far future expires header for browser caching.

4.3. Command Extensions 49

graph_models.html
https://www.graphviz.org/
list_model_info.html
print_settings.html
runscript.html
runserver_plus.html
https://werkzeug.palletsprojects.com/
sync_s3.html

django-extensions Documentation, Release 3.2.3

• syncdata - Makes the current database have the same data as the fixture(s), no more, no less.

• unreferenced_files - Prints a list of all files in MEDIA_ROOT that are not referenced in the database.

• update_permissions - Reloads permissions for specified apps, or all apps if no args are specified.

• validate_templates - Validate templates on syntax and compile errors.

• set_default_site - Set parameters of the default django.contrib.sites Site using name and domain or system-fqdn.

4.4 Command Signals

synopsis Signals fired before and after a command is executed.

A signal is thrown pre/post each management command allowing your application to hook into each commands exe-
cution.

4.4.1 Basic Example

An example hooking into show_template_tags:

from django_extensions.management.signals import pre_command, post_command
from django_extensions.management.commands.show_template_tags import Command

def pre_receiver(sender, args, kwargs):
I'm executed prior to the management command

def post_receiver(sender, args, kwargs, outcome):
I'm executed after the management command

pre_command.connect(pre_receiver, Command)
post_command.connect(post_receiver, Command)

4.4.2 Custom Permissions For All Models

You can use the post signal to hook into the update_permissions command so that you can add your own
permissions to each model.

For instance, lets say you want to add list and view permissions to each model. You could do this by adding them
to the permissions tuple inside your models Meta class but this gets pretty tedious.

An easier solution is to hook into the update_permissions call, as follows;

from django.db.models.signals import post_syncdb
from django.contrib.contenttypes.models import ContentType
from django.contrib.auth.models import Permission
from django_extensions.management.signals import post_command
from django_extensions.management.commands.update_permissions import Command as
→˓UpdatePermissionsCommand

def add_permissions(sender, **kwargs):
"""
Add view and list permissions to all content types.
"""
for each of our content types

(continues on next page)

50 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

(continued from previous page)

for content_type in ContentType.objects.all():

for action in ['view', 'list']:
build our permission slug
codename = "%s_%s" % (action, content_type.model)

try:
Permission.objects.get(content_type=content_type, codename=codename)
Already exists, ignore

except Permission.DoesNotExist:
Doesn't exist, add it
Permission.objects.create(content_type=content_type,

codename=codename,
name="Can %s %s" % (action, content_type.name))

print "Added %s permission for %s" % (action, content_type.name)
post_command.connect(add_permissions, UpdatePermissionsCommand)

Each time update_permissions is called add_permissions will be called which ensures there are view and
list permissions to all content types.

4.4.3 Using pre/post signals on your own commands

The signals are implemented using a decorator on the handle method of a management command, thus using this
functionality in your own application is trivial:

from django_extensions.management.utils import signalcommand

class Command(BaseCommand):

@signalcommand
def handle(self, *args, **kwargs):
...
...

4.5 Debugger Tags

synopsis Allows you to use debugger breakpoints on Django templates.

4.5.1 Introduction

These templatetags make debugging Django templates easier. You can choose between ipdb, pdb or wdb filters.

4.5.2 Usage

Make sure that you load debugger_tags:

{% load debugger_tags %}

Now, you’re ready to use debugger filters inside a template:

4.5. Debugger Tags 51

django-extensions Documentation, Release 3.2.3

{% for object in object_list %}
{{ object|ipdb }}

{% endfor %}

When rendering the template an ipdb session will be started.

4.6 Field Extensions

synopsis Field Extensions

4.6.1 Current Database Model Field Extensions

• AutoSlugField - AutoSlugField will automatically create a unique slug incrementing an appended number on
the slug until it is unique. Inspired by SmileyChris’ Unique Slugify snippet.

AutoSlugField takes a populate_from argument that specifies which field, list of fields, or model method the
slug will be populated from, for instance:

slug = AutoSlugField(populate_from=['title', 'description', 'get_author_name'])

populate_from can traverse a ForeignKey relationship by using Django ORM syntax:

slug = AutoSlugField(populate_from=['related_model__title', 'related_model__get_
→˓readable_name'])

AutoSlugField uses Django’s slugify function by default to “slugify” populate_from field.

To provide custom “slugify” function you could either provide the function as an argument to
AutoSlugField or define your slugify_function method within a model.

1. slugify_function as an argument to AutoSlugField.

models.py

from django.db import models

from django_extensions.db.fields import AutoSlugField

def my_slugify_function(content):
return content.replace('_', '-').lower()

class MyModel(models.Model):

title = models.CharField(max_length=42)
slug = AutoSlugField(populate_from='title', slugify_function=my_slugify_

→˓function)

2. slugify_function as a method within a model class.

models.py

from django.db import models

(continues on next page)

52 Chapter 4. Contents

https://docs.djangoproject.com/en/dev/ref/utils/#django.utils.text.slugify

django-extensions Documentation, Release 3.2.3

(continued from previous page)

from django_extensions.db.fields import AutoSlugField

class MyModel(models.Model):

title = models.CharField(max_length=42)
slug = AutoSlugField(populate_from='title')

def slugify_function(self, content):
return content.replace('_', '-').lower()

Important. If you both provide slugify_function in a model class and pass
slugify_function to AutoSlugField field, then model’s slugify_function method
will take precedence.

• RandomCharField - AutoRandomCharField will automatically create a unique random character field with the
specified length. By default upper/lower case and digits are included as possible characters. Given a length of 8
that yields 3.4 million possible combinations. A 12 character field would yield about 2 billion. Below are some
examples:

>>> RandomCharField(length=8, unique=True)
BVm9GEaE

>>> RandomCharField(length=4, include_alpha=False)
7097

>>> RandomCharField(length=12, include_punctuation=True)
k[ZS.TR,0LHO

>>> RandomCharField(length=12, lowercase=True, include_digits=False)
pzolbemetmok

• CreationDateTimeField - DateTimeField that will automatically set its date when the object is first saved to the
database. Works in the same way as the auto_now_add keyword.

• ModificationDateTimeField - DateTimeField that will automatically set its date when an object is saved to the
database. Works in the same way as the auto_now keyword. It is possible to preserve the current timestamp by
setting update_modified to False:

>>> example = MyTimeStampedModel.objects.get(pk=1)

>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)

>>> example.save(update_modified=False)

>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)

>>> example.save()

>>> print example.modified
datetime.datetime(2016, 4, 8, 14, 25, 43, 123456, tzinfo=<UTC>)

It is also possible to set the attribute directly on the model, for example when you don’t use the TimeStamped-
Model provided in this package, or when you are in a migration:

4.6. Field Extensions 53

django-extensions Documentation, Release 3.2.3

>>> example = MyCustomModel.objects.get(pk=1)

>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)

>>> example.update_modified=False

>>> example.save()

>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)

• ShortUUIDField - CharField which transparently generates a UUID and pass it to base57. It result in shorter
22 characters values useful e.g. for concise, unambiguous URLS. It’s possible to get shorter values with length
parameter: they are not Universal Unique any more but probability of collision is still low

• JSONField - a generic TextField that neatly serializes/unserializes JSON objects seamlessly. Django 1.9 intro-
duces a native JSONField for PostgreSQL, which is preferred for PostgreSQL users on Django 1.9 and above.

4.7 Jobs Scheduling

synopsis Documentation on creating/using jobs in Django-extensions

Creating jobs works much like management commands work in Django.

4.7.1 Setup

Run

$ python manage.py create_jobs <django_application>

to make a jobs directory inside of an application. The jobs directory will have the following tree:

jobs
daily

__init__.py
hourly

__init__.py
monthly

__init__.py
weekly

__init__.py
yearly

__init__.py
__init__.py
sample.py

4.7.2 Create a job

A job is a Python script with a mandatory BaseJob class which extends from MinutelyJob,
QuarterHourlyJob, HourlyJob, DailyJob, WeeklyJob, MonthlyJob or Yearly. It has one method
that must be implemented called execute, which is called when the job is run. The directories hourly, daily,
monthly, weekly and yearly are used only to for organisation purpose.

54 Chapter 4. Contents

django-extensions Documentation, Release 3.2.3

Note: If you want to use QuarterHourlyJob or Minutely job, create python package with name
quarter_hourly or minutely respectively (similar to hourly or daily package).

To create your first job you can start copying sample.py. Remember to replace BaseJob with MinutelyJob,
QuarterHourlyJob, HourlyJob, DailyJob, WeeklyJob, MonthlyJob or Yearly. Some simple exam-
ples are provided by the django_extensions.jobs package.

Note that each job should be in a new python script (within respective directory) and the class implementing the cron
should be named Job. Also, __init__.py file is not used for identifying jobs.

4.7.3 Run a job

The following commands are related to jobs:

• create_jobs, create the directory structure for jobs

• runjob, run a single job

• runjobs, run all hourly/daily/weekly/monthly jobs

Use “runjob(s) -l” to list all jobs recognized.

Jobs do not run automatically! You must either run a job manually specifying the exact time on which the command
is to be run, or use crontab:

@hourly /path/to/my/project/manage.py runjobs hourly

@daily /path/to/my/project/manage.py runjobs daily

@weekly /path/to/my/project/manage.py runjobs weekly

@monthly /path/to/my/project/manage.py runjobs monthly

4.8 Model Extensions

synopsis Model Extensions

4.8.1 Introduction

Django Extensions provides you a set of Abstract Base Classes for models that implements commonly used patterns
like holding the model’s creation and last modification dates.

4.8.2 Database Model Extensions

• ActivatorModel - Abstract Base Class that provides a status, activate_date, and deactivate_date
fields.

The status field is an IntegerField whose value is chosen from a tuple of choices - active and inactive -
defaulting to active. This model also exposes a custom manager, allowing the user to easily query for active or inactive
objects.

E.g.: Model.objects.active() returns all instances of Model that have an active status.

• TitleDescriptionModel - This Abstract Base Class model provides title and description fields.

4.8. Model Extensions 55

https://github.com/django-extensions/django-extensions/tree/master/django_extensions/jobs

django-extensions Documentation, Release 3.2.3

The title field is CharField with a maximum length of 255 characters, non-nullable. description. On the
other hand, description is a nullable TextField.

• TimeStampedModel - An Abstract Base Class model that provides self-managed created and modified
fields.

Both of the fields are customly defined in Django Extensions as CreationDateTimeField and
ModificationDateTimeField. Those fields are subclasses of Django’s DateTimeField and will store the
value of django.utils.timezone.now() on the model’s creation and modification, respectively

• TitleSlugDescriptionModel - An Abstract Base Class model that, like the TitleDescriptionModel, pro-
vides title and description fields but also provides a self-managed slug field which populates from the
title.

That field’s class is a custom defined AutoSlugField, based on Django’s SlugField. By default, it uses - as a
separator, is unique and does not accept blank values. It is possible to customize slugify_function by defining
your custom function within a model:

models.py

from django.db import models

from django_extensions.db.models import TitleSlugDescriptionModel

class MyModel(TitleSlugDescriptionModel, models.Model):

def slugify_function(self, content):
"""
This function will be used to slugify
the title (default `populate_from` field)
"""
return content.replace('_', '-').lower()

See AutoSlugField docs for more details.

4.9 Permissions

synopsis Permissions Mixins to limit access and model instances in a view.

4.9.1 Introduction

Django Extensions offers mixins for Class Based Views that make it easier to query and limit access to certain views.

4.9.2 Current Mixins

• ModelUserFieldPermissionMixin - A Class Based View mixin that limits the accessibility to the view based on
the “owner” of the view.

This will check if the currently logged in user (self.request.user) matches the owner of the model instance.
By default, the “owner” will be called “user”.

56 Chapter 4. Contents

field_extensions.html
field_extensions.html

django-extensions Documentation, Release 3.2.3

models.py

from django.db import models
from django.conf import settings

class MyModel(models.Model):
author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete = models.CASCADE)
content = models.TextField()

views.py

from django.views.generic import UpdateView

from django_extensions.auth.mixins import ModelUserFieldPermissionMixin

from .models import MyModel

class MyModelUpdateView(ModelUserFieldPermissionMixin, UpdateView):
model = MyModel
template_name = 'mymodels/update.html'
model_permission_user_field = 'author'

4.10 Utilities

synopsis Other utility functions or classes

4.10.1 InternalIPS

InternalIPS allows to specify CIDRs for INTERNAL_IPS settings parameter.

Example settings.py:

from django_extensions.utils import InternalIPS

INTERNAL_IPS = InternalIPS([
"127.0.0.1",
"172.16.0.0/16",

])

Use sort_by_size to sort the lookups to search the largest subnet first.

Example settings.py:

from django_extensions.utils.internal_ips import InternalIPS

INTERNAL_IPS = InternalIPS([
"127.0.0.1",
"172.16.0.0/16",

], sort_by_size=True)

InternalIPS is inspired by netaddr.IPSet please consider using it instead as it is more optimized but requires the
additional netaddr package.

4.10. Utilities 57

django-extensions Documentation, Release 3.2.3

4.11 Validators

synopsis Validator extensions

4.11.1 Usage

Example:

from django_extensions.validators import HexValidator

class UserKeys(models.Model):
user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

public_key = models.CharField(max_length=64, validators=[HexValidator(length=64)])
private_key = models.CharField(max_length=128,

→˓validators=[HexValidator(length=128)])

4.11.2 Current Database Model Field Extensions

NoControlCharactersValidator

Validates that Control Characters like new lines or tabs are not allowed. Can optionally specify whitelist of control
characters to allow.

NoWhitespaceValidator

Validates that leading and trailing whitespace is not allowed.

HexValidator

Validates that the string is a valid hex string. Can optionally also specify length, min_length and max_length parame-
ters.

58 Chapter 4. Contents

CHAPTER 5

Indices and tables

• search

59

	Getting Started
	Getting it
	Compatibility with versions of Python and Django
	Contents
	Installation instructions
	Admin Extensions
	Command Extensions
	Command Signals
	Debugger Tags
	Field Extensions
	Jobs Scheduling
	Model Extensions
	Permissions
	Utilities
	Validators

	Indices and tables

